128-Channel Organic EL Anode Driver

GENERAL DESCRIPTION

The ML9361 is an organic EL anode driver LSI with 128 drivers. The anode driver is constant current output type and allows adjustment of current and pulse width for each output. Since this LSI has the output condition setting function, which allows setting of all outputs High, all outputs Low, and all outputs High Impedance, the user can set driving methods suited to the characteristics of individual organic EL panel. When combined with ML9371 the organic EL cathode driver, the ML9361 can drive a 64×128 full-dot panel.

FEATURES

- Logic power supply voltage
- EL drive voltage
- Anode outputs
- Anode high output current
- Anode low output current
- Anode low ON-resistance
- Anode output current adjustment range
- Output pulse width adjustment
: 3.0 to 5.5 V
: 8.0 to 30 V (max.)
: 128 outputs
: -1.0 mA (constant current output, current adjustment range $=$ at 100\%)
: 40 mA (max.)
: 500Ω (max.)
$: 0 \%, 33 \%, 66 \%$, and 100% (for each output)
: Adjustable in 16 different degrees (adjusted by external clock input, for each output)
- All outputs High, all outputs Low, and all outputs High Impedance can be set as output conditions
- Package
: Gold bump chip (TCP is tailored for each customer requirement)

BLOCK DIAGRAM

PIN CONFIGURATION (Gold bump chip)

PIN DESCRIPTION

Symbol	I/O	Connected to	Description
$\begin{gathered} \mathrm{V}_{\mathrm{DISP}} \\ \mathrm{~V}_{\mathrm{DD}} \\ \text { D-GND } \\ \text { L-GND } \end{gathered}$	-	Power supply	$\mathrm{V}_{\text {DISP }}$ is a power supply pin for anode driver circuit and constant current source circuit. $V_{D D}$ is the logic circuit power supply pin. D-GND is a ground pin for anode driver circuit and constant current source circuit. L-GND is a ground pin for logic circuit. D-GND and L-GND should be connected outside the LSI.
$V_{\text {EL }}$	I	Power supply	OUT1 to OUT128 output current setting voltage input pin. Input voltage to this pin is enabled when $\mathrm{V}_{\text {EL }} S E L$ is high, and disabled when it is low. Leave this pin open or input a voltage within the guaranteed operating range.
$\mathrm{V}_{\mathrm{EL}} \mathrm{SEL}$	1	Microcontroller	Pin for selecting the output current adjusting voltage for anode driver circuit. - When this pin is low, LSI's internal voltage (5 V) is selected. - When this pin is high, the input voltage at the V_{EL} pin is selected.
R-ADJ	I	Resistor	OUT1 to OUT128 output current setting resistor connection pin.
$\overline{\mathrm{F}} / \mathrm{R}$	I	Microcontroller	Data transfer direction select signal input pin for current adjusting data shift register and pulse width adjusting data shift register. - When this pin is low, data is transferred starting at POn-1 toward POn-128. ($n=1$ to 5) - When this pin is high, data is transferred starting at POn-128 toward POn-1. $(\mathrm{n}=1$ to 5$)$
$\begin{aligned} & \text { IADJO-I/O } \\ & \text { IADJ1-I/O } \end{aligned}$	I/O		Anode output current adjusting data input-output pins. When the \bar{F} / R pin is low, these pins are input pins and data is read into at the rising edge of D-CLK. When the \bar{F} / R pin is high, these pins are output pins and the output status changes at the falling edge of D-CLK.
$\begin{aligned} & \text { IADJ0-O/I } \\ & \text { IADJ1-O/I } \end{aligned}$	O/I		Anode output current adjusting data input-output pins. When the \bar{F} / R pin is high, these pins are input pins and data is read into at the rising edge of D-CLK. When the F/R pin is low, these pins are output pins and the output status changes at the falling edge of D-CLK.
$\begin{aligned} & \hline \text { PADJ0-I/O } \\ & \text { PADJ1-I/O } \\ & \text { PADJ2-I/O } \\ & \text { PADJ3-I/O } \end{aligned}$	I/O		Anode output pulse width adjusting data input-output pins. When the \bar{F} / R pin is low, these pins are input pins and data is read into at the rising edge of D-CLK. When the F/R pin is high, these pins are output pins and the output status changes at the falling edge of D-CLK.
$\begin{aligned} & \text { PADJ0-O/I } \\ & \text { PADJ1-O/I } \\ & \text { PADJ2-O/I } \\ & \text { PADJ3-O/I } \end{aligned}$	O/I		Anode output pulse width adjusting data input-output pins. When the \bar{F} / R pin is high, these pins are input pins and data is read into at the rising edge of D-CLK. When the F/R pin is low, these pins are output pins and the output status changes at the falling edge of D-CLK.
D-CLK	1	Microcontroller	Anode output current adjusting data and anode output pulse width adjusting data transfer clock input pin (Schmitt input)
STB	1	Microcontroller	Anode output current adjusting data and anode output pulse width adjusting data latch strobe signal input pin (Schmitt input)
RESET	1	Microcontroller	Initialization signal input pin. When this pin is set low, the LSI enters the following initial setting states: - Shift register outputs and latch outputs: all "low" - All anode drive signal outputs: "high impedance"
$\overline{\mathrm{HZ}}$	I	Microcontroller	Input pin for anode drive signal output control signal. When this pin is low, all anode drive signal outputs are high impedance.
ALL H	1	Microcontroller	Input pin for anode drive signal output control signal (Schmitt input). When this pin is high, all anode drive signal outputs are constant current output.
ALL L	1	Microcontroller	Input pin for anode drive signal output control signal (Schmitt input). When this pin is high, anode drive signal outputs are all low.
OFF HZ	1	Microcontroller	Input pin for anode drive signal output control signal. Used to set the anode drive signal output condition at the time that is OFF to either low or high impedance with the combination of AO HZ, P L, and anode output pulse width adjusting data.
AO HZ	1	Microcontroller	Input pin for anode drive signal output control signal. Used to set the anode drive signal output condition at the time that dot is OFF to either low or high impedance with the combination of OFF HZ, P L, and anode output pulse width adjusting data.
P L	1	Microcontroller	Input pin for anode drive signal output control signal (Schmitt input). Used to set the anode drive signal output condition at the time that dot is OFF to either low or high impedance with the combination of OFF HZ, AO HZ, and anode output pulse width adjusting data.
A-CLK	I	Microcontroller	Anode output pulse width adjusting clock input pin (Schmitt input).
$\begin{gathered} \text { OUT } 1 \text { to } \\ 128 \end{gathered}$	0	Organic EL anode	Anode drive signal output pins for organic EL.

FUNCTION TABLE

1. Operation during Transfer of Anode Output Current Adjusting Data and Anode Output Pulse Width Adjusting Data

- When $\overline{\mathrm{F}} / \mathrm{R}$ is low

Input				Shift Register				Latch				Output
RESET	D-CLK	PADJ m-I/O, IADJ n-I/O	STB	$\begin{aligned} & \text { PO } \\ & \text { k-1 } \end{aligned}$	$\begin{aligned} & \text { PO } \\ & \text { k-2 } \end{aligned}$	$\begin{gathered} \text { PO } \\ \text { k-127 } \end{gathered}$	$\begin{gathered} \text { PO } \\ \text { k-128 } \end{gathered}$	PAO $\mathrm{m}-1$, IAO n-1	PAO m-2, IAO n-2	$\begin{gathered} \text { PAO } \\ \text { m-127, } \\ \text { IAO } \\ \mathrm{n}-127 \end{gathered}$	$\begin{array}{\|c} \hline \text { PAO } \\ \text { m-128, } \\ \text { IAO } \\ \mathrm{n}-128 \end{array}$	PADJ m-O/I, IADJ n-O/I
L	X	X	X	L	L	L	L	L	L	L	L	L
H	F	L	L	L	$\begin{aligned} & \text { PO } \\ & \mathrm{k}-1 \end{aligned}$	$\begin{gathered} \text { PO } \\ \text { k-126 } \end{gathered}$	$\begin{gathered} \text { PO } \\ \text { k-127 } \end{gathered}$	Invariable				Invariable
		H	L	H	$\begin{aligned} & \mathrm{PO} \\ & \mathrm{k}-1 \end{aligned}$	$\begin{gathered} \mathrm{PO} \\ \text { k-126 } \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ \text { k-127 } \end{gathered}$	Invariable				Invariable
	τ	L	L	Invariable				Invariable				$\begin{gathered} \mathrm{PO} \\ \mathrm{k}-128 \end{gathered}$
		H	L	Invariable				Invariable				$\begin{gathered} \mathrm{PO} \\ \mathrm{k}-128 \end{gathered}$
	L	X	L	Invariable				Invariable				Invariable
			H	Invariable				$\begin{aligned} & \mathrm{PO} \\ & \mathrm{k}-1 \end{aligned}$	$\begin{aligned} & \mathrm{PO} \\ & \mathrm{k}-2 \end{aligned}$	$\begin{gathered} \text { PO } \\ \text { k-127 } \end{gathered}$	$\begin{gathered} \text { PO } \\ \text { k-128 } \end{gathered}$	Invariable

$m=0$ to $3 \quad n=0,1 \quad k=0$ to 5
2. Operation during Transfer of Anode Output Current Adjusting Data and Anode Output Pulse Width Adjusting Data

- When \bar{F} / R is high

Input				Shift Register				Latch				Output
RESET	D-CLK	$\begin{aligned} & \text { PADJ } \\ & \text { m-O/I, } \\ & \text { IADJ } \\ & \text { n-O/I } \end{aligned}$	STB	$\begin{gathered} \mathrm{PO} \\ \mathrm{k}-128 \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ \mathrm{k}-127 \end{gathered}$	$\begin{aligned} & \text { PO } \\ & \text { k-2 } \end{aligned}$	$\begin{aligned} & \text { PO } \\ & \mathrm{k}-1 \end{aligned}$	$\begin{array}{\|c} \hline \text { PAO } \\ \mathrm{m}-128, \\ \text { IAO } \\ \mathrm{n}-128 \end{array}$	$\begin{gathered} \text { PAO } \\ \mathrm{m}-127, \\ \mathrm{IAO} \\ \mathrm{n}-127 \end{gathered}$	$\begin{gathered} \text { PAO } \\ \text { m-2, } \\ \text { IAO } \\ \text { n-2 } \end{gathered}$	$\begin{gathered} \text { PAO } \\ \mathrm{m}-1, \\ \text { IAO } \\ \mathrm{n}-1 \end{gathered}$	PADJ m-I/O, IADJ n-I/O
L	X	X	x	L	L	L	L	L	L	L	L	L
H	\checkmark	L	L	L	$\begin{gathered} \mathrm{PO} \\ \text { k-128 } \end{gathered}$	$\begin{aligned} & \text { PO } \\ & \text { k-3 } \end{aligned}$	$\begin{aligned} & \text { PO } \\ & \text { k-2 } \end{aligned}$	Invariable				Invariable
		H	L	H	$\begin{gathered} \text { PO } \\ \text { k-128 } \end{gathered}$	$\begin{aligned} & \text { PO } \\ & \text { k-3 } \end{aligned}$	$\begin{aligned} & \text { PO } \\ & \text { k-2 } \end{aligned}$	Invariable				Invariable
	τ	L	L	Invariable				Invariable				$\begin{aligned} & \text { PO } \\ & \text { k-1 } \end{aligned}$
		H	L	Invariable				Invariable				$\begin{aligned} & \mathrm{PO} \\ & \mathrm{k}-1 \end{aligned}$
	L	X	L	Invariable				Invariable				Invariable
			H	Invariable				$\begin{gathered} \text { PO } \\ \text { k-128 } \end{gathered}$	$\begin{aligned} & \text { PO } \\ & \text { k-127 } \end{aligned}$	$\begin{aligned} & \text { PO } \\ & \text { k-2 } \end{aligned}$	$\begin{aligned} & \mathrm{PO} \\ & \mathrm{k}-1 \end{aligned}$	Invariable

3. Operation of Output Section

$\overline{\mathrm{HZ}}$	ALL H	ALL L	OFF HZ	AO HZ	PL	COMP OUTn	PWM Data n	OUTn
L	X	X	X	X	X	x	X	High impedance
H	H	X	X	X	X	X	X	Constant current output
	L	H	X	X	X	X	X	Low
		L	L	X	L	H	X	Constant current output
						L	X	Low
					H	H	One of PWM data n is "H"	Low
						L	All "L"	High impedance
			H	L	L	H	X	Constant current output
						L	One of PWM data n is " H "	High impedance
							All "L"	Low
					H	H	One of PWM data n is " H "	Low
						L	All "L"	High impedance
				H	L	H	X	Constant current output
						L	One of PWM data n is " H "	High impedance
							All "L"	High impedance
					H	H	One of PWM data n is " H "	Low
						L	All "L"	High impedance

Note: When setting the STB pin to a high level, do so only when both the $\overline{\mathrm{HZ}}$ pin and the ALL L pin are high or both are low.

OUTPUT WAVEFORMS

1. When OFF HZ, A0 HZ, and PL are all low

2. When OFF HZ is high and A 0 HZ and $\mathrm{P} L$ are low

$\overline{\text { RESET }}$

HZ
ALL H
ALL L
OFF HZ
AO HZ
PL
PWM DATAm
PWM DATAn
D-CLK
STB
A-CLK
OUTm
OUTn

3. When OFF HZ and A 0 HZ are high and $\mathrm{P} L$ is low

4. When OFF HZ and A0 HZ are low and PL is controlled by pulse

5. When OFF HZ is high, A 0 HZ is low, and $\mathrm{P} L$ is controlled by pulse

6. When OFF HZ and A0 HZ are high and P L is controlled by pulse

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Logic power supply voltage	$V_{D D}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to +6.5	V
EL drive power supply voltage (anode)	$\mathrm{V}_{\text {DISP }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to +35	V
Logic input voltage	$\mathrm{V}_{\text {IN }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Logic output voltage	$\mathrm{V}_{\text {OUT }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $V_{D D}+0.3$	V
EL output current adjustment voltage	$V_{\text {EL }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-0.3 to $\mathrm{V}_{\text {DISP }}+0.3$	V
EL driver output voltage	$\mathrm{V}_{\text {out-el }}$	Applied to OUT1 to OUT128	-0.3 to $\mathrm{V}_{\text {DISP }}+0.3$	V
EL driver output voltage (pulse) ${ }^{* 1}$	Vout-elp	Applied to OUT1 to OUT128	$-\mathrm{V}_{\text {DISP }}$ to $2 \times \mathrm{V}_{\text {DISP }}$	V
EL driver output current	$\mathrm{I}_{\text {ELH }}$ (source)	Applied to OUT1 to OUT128	-1.5	mA
	$\mathrm{I}_{\text {ELL }}$ (sink)		50	mA
Storage temperature	Tstg	-	-40 to +125	${ }^{\circ} \mathrm{C}$

*1 Consult Oki for customization of pulse width.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Range	Unit
Logic power supply voltage	$V_{\text {DD }}$	-	3.0 to 5.5	V
EL drive power supply voltage (anode)	$\mathrm{V}_{\text {DISP }}$	-	8 to 30	V
Logic input voltage	$\mathrm{V}_{\text {IN }}$	-	0.0 to $V_{D D}$	V
EL output current adjustment voltage	V_{EL}	-	4 to $\mathrm{V}_{\text {DISP }}-3$	V
EL driver output current	$\mathrm{I}_{\text {ELH }}$ (source)	Applied to OUT1 to OUT128 Current adjustment range = 100\%	-0.1 to -1.0	mA
	lell (sink)	Applied to OUT1 to OUT128	0 to 40	mA
Junction operating temperature	Tjop	-	-40 to +125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

DC Characteristics 1

Parameter	Symbol	Applicable Pins	Condition	Min.	Typ.	Max.	Unit
" H " input voltage	V_{H}	All input pins	-	$0.8 \mathrm{~V}_{\text {DD }}$	-	$V_{\text {DD }}$	V
"L" input voltage	V_{IL}	All input pins	-	0	-	$0.2 \mathrm{~V}_{\text {DD }}$	V
Schmitt voltage width	$\mathrm{V}_{\text {SH }}$	D-CLK, A-CLK, STB, A-CLK, ALL H, ALL L	$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	0.4	1.0	1.6	V
"H" input current	I_{1+1}	Inputs other than RESET, HZ, ALL H, ALL L, $\frac{\mathrm{V}_{\mathrm{EL}} \text { SEL }}{}$, and	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V} \end{gathered}$	-10	-	10	$\mu \mathrm{A}$
	I_{1+2}	$\overline{\text { RESET, }} \overline{\mathrm{HZ}}, \mathrm{ALL} \mathrm{H}$, ALL L, V_{EL} SEL, \bar{F} / R	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V} \end{gathered}$	40	100	200	$\mu \mathrm{A}$
"L" input current	$I_{\text {IL1 }}$	Inputs other than RESET, $\overline{H Z}$, ALL H, ALL L, VELSEL, and \bar{F} / R	$\begin{gathered} V_{D D}=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{I}}=0.0 \mathrm{~V} \end{gathered}$	-10	-	10	$\mu \mathrm{A}$
	$I_{\text {LL2 }}$	$\overline{\mathrm{RESET}}, \overline{\mathrm{HZ}}, \mathrm{ALL} \mathrm{H}$, ALL L, V_{EL} SEL, \bar{F} / R	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ \mathrm{~V}_{1}=0.0 \mathrm{~V} \end{gathered}$	-10	-	10	$\mu \mathrm{A}$
"H" output voltage	$\mathrm{V}_{\text {OH }}$	PADJm-I/O, PADJm-O/I, IADJn-I/O, IADJn-O/l	$\begin{gathered} V_{D D}=3.0 \mathrm{~V} \\ \mathrm{I}_{\mathrm{O}}=-200 \mu \mathrm{~A} \end{gathered}$	$0.8 \mathrm{~V}_{\text {D }}$	-	-	V
"L" output voltage	VoL	PADJm-I/O, PADJm-O/I, IADJn-I/O, IADJn-O/I	$\begin{aligned} & V_{D D}=3.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=200 \mu \mathrm{~A} \end{aligned}$	-	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
Anode driver ON current 1	Ielont	OUT1 to OUT128	$\begin{gathered} \mathrm{V}_{\text {DISP }}=24 \mathrm{~V} \\ \mathrm{~V}_{\text {EL }}=V_{\mathrm{O}}=15 \mathrm{~V} \\ \mathrm{~V}_{\text {EL }} \mathrm{SEL}^{2}=\text { high } \\ \text { C-ADJ }=30 \mathrm{k} \Omega \\ \text { Current adjustment range } \\ =100 \% \end{gathered}$	$\begin{aligned} & -465 \\ & (-7 \%) \end{aligned}$	-500	$\begin{aligned} & -535 \\ & (+7 \%) \end{aligned}$	$\mu \mathrm{A}$
Anode driver ON current 2	IELON2	OUT1 to OUT128	$V_{\text {DISP }}=24 \mathrm{~V}$ $V_{\text {EL }} V_{0}=15 \mathrm{~V}$ $V_{\text {ELE }}$ SEL $=$ high R-ADJ Current adjustment range $=66 \%$	$\begin{aligned} & -306 \\ & (-7 \%) \end{aligned}$	-330	$\begin{gathered} -353 \\ (+7 \%) \end{gathered}$	$\mu \mathrm{A}$
Anode driver ON current 3	$\mathrm{I}_{\text {Elon3 }}$	OUT1 to OUT128	$\begin{gathered} \hline \mathrm{V}_{\text {DISP }}=24 \mathrm{~V} \\ \mathrm{~V}_{\text {EL }}=\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V} \\ \mathrm{~V}_{\text {ELI }}=\mathrm{SEL}=\text { high } \\ \text { C-ADJ }=30 \mathrm{k} \Omega \\ \text { Current adjustment range } \\ =33 \% \end{gathered}$	$\begin{aligned} & -153 \\ & (-7 \%) \end{aligned}$	-165	$\begin{aligned} & -177 \\ & (+7 \%) \end{aligned}$	$\mu \mathrm{A}$
Anode driver ON current 4	IElon4	OUT1 to OUT128	$\mathrm{V}_{\text {DISP }}=24 \mathrm{~V}$ $\mathrm{~V}_{\text {EL }}=\mathrm{V}_{\mathrm{O}}=7.5 \mathrm{~V}$ $\mathrm{~V}_{\text {ELS }}=$ high R-ADJ Cur Current adjustment range $=100 \%$	$\begin{gathered} -112 \\ (-10 \%) \end{gathered}$	-125	$\begin{gathered} -138 \\ (+10 \%) \end{gathered}$	$\mu \mathrm{A}$
Anode driver ON current 5	IELon5	OUT1 to OUT128	$\begin{gathered} \mathrm{V}_{\text {DISP }}=24 \mathrm{~V} \\ \mathrm{~V}_{\text {EL }}=\mathrm{V}_{\mathrm{O}}=7.5 \mathrm{~V} \\ \mathrm{~V}_{\text {EIL }} \mathrm{SEL}=\text { high } \\ \text { R-ADJ } \\ \text { Current adjus }=60 \mathrm{k} \Omega \\ =66 \% \end{gathered}$	$\begin{gathered} -74 \\ (-10 \%) \end{gathered}$	-82.5	$\begin{gathered} -91 \\ (+10 \%) \end{gathered}$	$\mu \mathrm{A}$
Anode driver ON current 6	$I_{\text {Elong }}$	OUT1 to OUT128	$\begin{gathered} \mathrm{V}_{\text {DISP }}=24 \mathrm{~V} \\ \mathrm{~V}_{\text {EL }}=\mathrm{V}_{\mathrm{O}}=7.5 \mathrm{~V} \\ \mathrm{~V}_{\text {EL }} \mathrm{SEL}=\mathrm{high} \\ \mathrm{R}-\mathrm{ADJ}=60 \mathrm{k} \Omega \end{gathered}$ Current adjustment range = 33\%	$\begin{gathered} -37.5 \\ (-12 \%) \end{gathered}$	-41.25	$\begin{gathered} -46 \\ (+12 \%) \end{gathered}$	$\mu \mathrm{A}$

DC Characteristics 2

Parameter	Symbol	Applicable Pins	Condition	Min.	Typ.	Max.	Unit
Anode driver ON current 7	$\mathrm{I}_{\text {ELon7 }}$	OUT1 to OUT128	$V_{\text {DISP }}=24 \mathrm{~V}$ $V_{O}=15 \mathrm{~V}$ $V_{\text {ELI }} S E L=10 \mathrm{w}$ R-ADJ $=10 \mathrm{k} \Omega$ Current adjustment range $=100 \%$	$\begin{gathered} -415 \\ (-17 \%) \end{gathered}$	-500	$\begin{gathered} -585 \\ (+17 \%) \end{gathered}$	$\mu \mathrm{A}$
Anode driver ON current 8	$\mathrm{l}_{\text {Elons }}$	OUT1 to OUT128	$\mathrm{V}_{\text {DISP }}=24 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{O}}=15 \mathrm{~V}$ $\mathrm{~V}_{\text {ELS }} S E L=10 \mathrm{w}$ $\mathrm{R}-\mathrm{ADJ}=10 \mathrm{k} \Omega$ Current adjustment range $=66 \%$	$\begin{gathered} -274 \\ (-17 \%) \end{gathered}$	-330	$\begin{gathered} -386 \\ (+17 \%) \end{gathered}$	$\mu \mathrm{A}$
Anode driver ON current 9	Ielong	OUT1 to OUT128	$V_{\text {DISP }}=24 \mathrm{~V}$ $V_{\mathrm{O}}=15 \mathrm{~V}$ $\mathrm{~V}_{\text {ELS }} S E L=10 \mathrm{w}$ $\mathrm{R}-\mathrm{ADJ}=10 \mathrm{k} \Omega$ Current adjustment range $=33 \%$	$\begin{gathered} -137 \\ (-17 \%) \end{gathered}$	-165	$\begin{gathered} -193 \\ (+17 \%) \end{gathered}$	$\mu \mathrm{A}$
Anode driver low output current 1	$\mathrm{I}_{\text {ELI } 1}$	OUT1 to OUT128	$\begin{gathered} \mathrm{V}_{\mathrm{DISP}}=8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}}=8 \mathrm{~V} \end{gathered}$	16	-	-	mA
Anode driver low output current 2	$\mathrm{IELL2}$	OUT1 to OUT128	$\begin{gathered} \mathrm{V}_{\mathrm{DISP}}=30 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V} \end{gathered}$	60	-	-	mA
Anode driver low output current 3	IeLl 3	OUT1 to OUT128	$\begin{gathered} \mathrm{V}_{\mathrm{DIPP}}=8 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \end{gathered}$	500	-	-	$\mu \mathrm{A}$
$\mathrm{V}_{\text {DISP }}$ dependence coefficient for anode driver ON current \qquad	$\Delta l_{\text {eloni }}$	OUT1 to OUT128	$\begin{aligned} & \mathrm{V}_{\text {DISP }}=17 \text { to } 30 \mathrm{~V} \\ & \mathrm{~V}_{\text {EL }}=\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V} \\ & \mathrm{R}-\mathrm{ADJ}=30 \mathrm{k} \Omega \end{aligned}$ Current adjustment range = 100%	-2.5	0	2.5	\%/V
V_{o} dependence coefficient for anode driver ON current	$\Delta l_{\text {ELON2 }}$	OUT1 to OUT128	$\begin{gathered} \mathrm{V}_{\text {DISP }}=24 \mathrm{~V} \\ \mathrm{~V}_{\text {EL }}=15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}}=8 \text { to } 21 \mathrm{~V} \\ \mathrm{R}-\mathrm{ADJ}=30 \mathrm{k} \Omega \end{gathered}$ Current adjustment range = 100%	-2.5	0	2.5	\%/V
Temperature coefficient for anode driver ON current	$\Delta l_{\text {ELon3 }}$	OUT1 to OUT128	$\begin{gathered} \mathrm{V}_{\mathrm{DISP}}=24 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EL}}=\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V} \\ \mathrm{R}-\mathrm{ADJ}=30 \mathrm{k} \Omega \end{gathered}$ Current adjustment range $=100 \%$	-0.1	0	0.1	\%/ ${ }^{\circ} \mathrm{C}$
Relative error between dots (excluding adjoining dots) for anode driver ON current	$\Delta l_{\text {ELon4 }}$	OUT1 to OUT128	$\begin{gathered} \mathrm{V}_{\text {DISP }}=24 \mathrm{~V} \\ \mathrm{~V}_{\text {EL }}=\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V} \\ \mathrm{R}-\mathrm{ADJ}=30 \mathrm{k} \Omega \end{gathered}$ Current adjustment range = 100% OUT1 to OUT128 = "ON" Inside one chip.	-5	0	5	\%
Tilt inside chip for anode driver ON current	$\Delta l_{\text {ELon5 }}$	OUT1 to OUT4 OUT63 to OUT66 OUT125 to OUT128	$\begin{gathered} \hline \mathrm{V}_{\text {DISP }}=24 \mathrm{~V} \\ \mathrm{~V}_{\text {EL }}=\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V} \\ \mathrm{R}-\mathrm{ADJ}=30 \mathrm{k} \Omega \\ \text { Current adjustment range } \\ =100 \% \\ \text { OUT1 to OUT128 = "ON" } \\ \text { Inside one chip. } \end{gathered}$	-3	0	3	\%
Relative error between adjoining dots for anode driver ON current	$\Delta l_{\text {elong }}$	OUT1 to OUT128	$\begin{gathered} \mathrm{V}_{\text {DISP }}=24 \mathrm{~V} \\ \mathrm{~V}_{\text {EL }}=\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V} \\ \text { R-ADJ }=30 \mathrm{k} \Omega \\ \text { Current adjustment range } \\ =100 \% \\ \text { OUT1 to OUT128 = "ON" } \\ \text { Inside one chip. } \end{gathered}$	-2	0	2	\%

*1 $\mathrm{V}_{\text {DISP }}$ dependence coefficient depends on the following conditions:
$\mathrm{I}\left(\mathrm{V}_{\text {DISP }}=\mathrm{nV}\right)$: Anode driver ON current at $\mathrm{V}_{\text {DISP }}=\mathrm{nV}$.
$\Delta I_{\text {ELON }}=\left[\mathrm{I}\left(\mathrm{V}_{\text {DISP }}=n \mathrm{~V}\right)-\mathrm{I}\left(\mathrm{V}_{\text {DISP }}=(\mathrm{n}+1) \mathrm{V}\right)\right] /\left\{\left[\mathrm{I}\left(\mathrm{V}_{\mathrm{DISP}}=\mathrm{nV}\right)+\mathrm{I}\left(\mathrm{V}_{\mathrm{DISP}}=(\mathrm{n}+1) \mathrm{V}\right)\right] / 2\right\} \times 100$
*2 V_{0} dependence coefficient depends on the following conditions:
$\mathrm{I}\left(\mathrm{V}_{\mathrm{O}}=\mathrm{nV}\right)$: Anode driver ON current at $\mathrm{V}_{\mathrm{O}}=\mathrm{nV}$.
$\Delta \mathrm{I}_{\text {ELON2 }}=\left[\mathrm{I}\left(\mathrm{V}_{\mathrm{O}}=\mathrm{nV}\right)-\mathrm{I}\left(\mathrm{V}_{\mathrm{O}}=(\mathrm{n}-1) \mathrm{V}\right)\right] /\left\{\left[\mathrm{I}\left(\mathrm{V}_{\mathrm{O}}=\mathrm{nV}\right)+\mathrm{I}\left(\mathrm{V}_{\mathrm{O}}=(\mathrm{n}-1) \mathrm{V}\right)\right] / 2\right\} \times 100$
*3 Tilt inside chip depends on the following conditions:
Cave: Average output current of OUT1 to 4, OUT63 to 66, and OUT125 to 128.
Lave: Average output current of OUT1 to 4.
Rave: Average output current of OUT125 to 128.
$\Delta_{\text {ELON5 }}=($ Lave - Cave)/Cave
$\Delta I_{\text {ELON5 }}=($ Rave - Cave $) /$ Cave
*4 A relative error between adjoining dots depends on the following condition:

Supply Current

Parameter	Symbol	Applicable Pins	Condition				
	Symbol	Applicable Pins		Min.	Typ.	Max.	Unit
Supply current	$\mathrm{I}_{\text {IIS } 1}$	$\mathrm{V}_{\text {DISP }}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{DISP}}=30 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{EL}}=15 \mathrm{~V} \\ \mathrm{~A}-\mathrm{CLK}=5 \mathrm{MHz} \\ \mathrm{R}-\mathrm{ADJ}=30 \mathrm{k} \Omega \\ \text { Current adjustment range } \\ =100 \% \\ \text { Output }=\text { open } \\ \text { PWM data }=\text { other than " } 0 \text { " } \end{gathered}$	-	-	5.0	mA
	IDISP2	$V_{\text {DISP }}$		-	-	300	$\mu \mathrm{A}$
	IDD1	$V_{\text {DD }}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ \mathrm{D} \text {-CLK }=5 \mathrm{MHz} \\ \text { DATA }=\text { " } 1010 \ldots . .10 " \end{gathered}$	-	-	18	mA
		$V_{D D}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ \text { D-CLK, A-CLK }=5 \mathrm{MHz} \\ \text { DATA }=" 1010 \ldots . . .10 " \end{gathered}$	-	-	20	mA
		$V_{D D}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ \text { A-CLK }=5 \mathrm{MHz} \\ \text { DATA }=" 1010 \ldots . .10 " \end{gathered}$	-	-	5	mA
	IDD2	$V_{D D}$	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \\ \mathrm{D}-\mathrm{CLK}=\text { halted } \\ \overline{\mathrm{RESET}}=0 \mathrm{~V} \end{gathered}$ All the other inputs are also 0 V .	-	-	100	$\mu \mathrm{A}$

AC Characteristics

Parameter	Symbol	Applicable pins	Condition	Min.	Typ.	Max.	Unit
D-CLK frequency	ftclk	D-CLK	-	0		5.0	MHz
D-CLK pulse width	tocw	D-CLK	-	50	-	-	ns
A-CLK frequency	$\mathrm{f}_{\text {Aclk }}$	A-CLK	-	0		5.0	MHz
A-CLK pulse width	$\mathrm{tacw}^{\text {a }}$	A-CLK	-	50	-	-	ns
DATA \rightarrow D-CLK setup time	tos	D-CLK IADJn-I PADJm-	-	50	-	-	ns
D-CLK \rightarrow DATA hold time	t_{H}	D-CLK IADJn-I PADJm-I	-	50	-	-	ns
STB pulse width	tstbw	STB	-	50	-	-	ns
ALL L \rightarrow STB setup time	$\mathrm{t}_{\text {ALSs }}$	ALL L, STB	-	100	-	-	ns
STB \rightarrow ALL L hold time	tsalh	ALL L, STB	-	100	-	-	ns
$\overline{\mathrm{HZ}} \rightarrow$ STB setup time	thzss	$\overline{H z}$, STB	-	100	-	-	ns
$\overline{S T B} \rightarrow \overline{\mathrm{HZ}}$ hold time	tshzH	$\overline{H Z}$, STB	-	100	-	-	ns
ALL L \rightarrow D-CLK setup time	taldos	ALL L, D-CLK	-	100	-	-	ns
D-CLK \rightarrow ALL L hold time	tocalh	ALL L, D-CLK	-	100	-	-	ns
ALL L \rightarrow A-CLK setup time	taLacs	ALL L, A-CLK	-	100	-	-	ns
A-CLK \rightarrow ALL L hold time	$\mathrm{t}_{\text {ACALH }}$	ALL L, A-CLK	-	100	-	-	ns
P L pulse width	tplw	PL	-	100	-	-	ns
PL \rightarrow ALL L setup time	tpals	ALL L, P L	-	100	-	-	ns
STB $\rightarrow P$ L	tstpLs	P L, STB	-	100	-	-	ns
$\overline{D-C L K} \rightarrow \text { STB }$ hold time	tocs	$\begin{gathered} \hline \text { D-CLK } \\ \text { STB } \end{gathered}$	-	50	-	-	ns
RESET pulse width	trw	RESET	-	100	-	-	ns
$\overline{\text { RESET }}$ execution time	trson	RESET	-	250	-	-	ns
A-CLK \rightarrow output delay time	$\begin{aligned} & t_{\mathrm{D} 口} \\ & \mathrm{t} \boldsymbol{D} \end{aligned}$	$\overline{\mathrm{HZ}}, \mathrm{ALLH}$ ALL L, P L A-CLK OUT1 to 128	-	-	-	2.0	$\mu \mathrm{s}$
Input signal rise/fall time	tr	All inputs	-	-	-	500	ns

TIMING DIAGRAM

Data Input

DESCRIPTION OF OPERATION

Initial Settings

Following initial settings can be made by setting the $\overline{\text { RESET }}$ pin to low.

- The shift register outputs and latch circuit outputs become all low.
- Anode drive signal output pins (OUT1 to 128) become high impedance.

Anode Output Current Adjustment

1. Output current adjustment for entire output

Output current of anode drive signal output pins (OUT1 to OUT128) can be adjusted, as a batch adjustment for all the output pins. Output current is adjusted by varying the value of the resistor connected between the R-ADJ pin and GND. Output current (typ.) at the time that the V_{EL} SEL pin is "high" and "low" is given by the following expressions:
[When the $\mathrm{V}_{\text {EL }}$ SEL pin is "high"]
Output current (typ.) $=\mathrm{V}_{\text {EL }}$ pin voltage \div R-ADJ resistance value
[When the $\mathrm{V}_{\mathrm{EL}} \mathrm{SEL}$ pin is "low"]
Output current (typ.) $=5 \mathrm{~V} \div \mathrm{R}$-ADJ resistance value
2. Output current adjustment for each output

Output current of anode drive signal output pins (OUT1 to OUT128) can be adjusted for each output pin. Adjustment of each output current is made by bit data IADJ0-n and IADJ1-n. This 2-bit data is written in the shift register at the rising edge of the D-CLK signal and latched at the rising edge of the STB signal.

Relation between IADJ0-n, IADJ1-n, and output current is shown below.

IADJ1-n	IADJ0-n	Current adjustment range
0	0	0%
0	1	33%
1	0	66%
1	1	100%

3. Output pulse width adjustment

Output pulse width of anode drive signal output pins (OUT1 to OUT128) can be adjusted for each output pin. Adjustment of each output pulse width is made by 4-bit data PADJ0-n, PADJ1-n, PADJ2-n, and PADJ3-n. This 4-bit data is written in the shift register at the rising edge of the D-CLK signal and latched at the rising edge of the STB signal. An anode drive signal output pin is configured as constant current output until the number of A-CLK pulses becomes equal to the output data of 4 bits of PADJ0-n, PADJ1-n, PADJ2-n, and PADJ3-n. When they have matched, the output becomes low or high impedance at the rising edge of the A-CLK pulse that has matched the output data of PADJ0-n, PADJ1-n, PADJ2-n, and PADJ3-n.

Relation between PADJ0-n, PADJ1-n, PADJ2-n, and PADJ3-n and output pulse width is shown below.

PADJ3-n	PADJ2-n	PADJ1-n	PADJ0-n	Output pulse width
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

Setting of Output Condition When Dot is OFF

The output condition when dot is OFF is set with the combination of $\overline{\mathrm{HZ}}$, ALL L, OFF HZ, A0 HZ, and PL signals. See "3. Operation of Output Section" in "FUNCTION TABLE" and the section of "OUTPUT WAVEFORMS".

Power Applying Sequence

It is possible to apply power first to V_{DD} or $\mathrm{V}_{\text {DISP. }}$. When power is applied to $\mathrm{V}_{\text {DISP }}$, and V_{DD} is 2.5 V or less, following operating states occur.

- Constant current source circuit does not operate.
- Anode drive signal output pins (OUT1 to 128) become high impedance.

Make the $\overline{\text { RESET }}$ pin high at least 250 ns after applying power to V_{DD}.
(Refer to $\overline{\text { RESET }}$ execution time in AC Characteristics.)

REVISION HISTORY

Document No.	Date	Page		Description
		Previous Edition	Current Edition	
PEDL9361-01	Dec. 12, 2002	-	-	Preliminary edition 1

NOTICE

1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2002 Oki Electric Industry Co., Ltd.

